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An E�cient Routing Protocol for Wireless Networks

Shree Murthy and J.J. Garcia-Luna-Aceves

Computer Engineering, University of California,

Santa Cruz, CA 95064

We present the wireless routing protocol (WRP). In WRP, routing nodes commu-
nicate the distance and second-to-last hop for each destination. WRP reduces the
number of cases in which a temporary routing loop can occur, which accounts for
its fast convergence properties. A detailed proof of correctness is presented and its
performance is compared by simulation with the performance of the distributed
Bellman-Ford algorithm (DBF), DUAL (a loop-free distance-vector algorithm)
and an ideal link-state algorithm (ILS), which represent the state of the art of
internet routing. The simulation results indicate that WRP is the most e�cient
of the alternatives analyzed.
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1 { Introduction

The routing protocols used in multihop packet-radio networks implemented in
the past [2, 3, 11] were based on shortest-path routing algorithms that have been
typically based on the distributed Bellman-Ford algorithm (DBF) [4]. According
to DBF, a routing node knows the length of the shortest path from each neighbor
to every network destination and this information is used to compute the shortest
path and successor in the path to each destination. An update message contains a
vector of one or more entries, each of which speci�es as a minimum, the distance to
a given destination. A major performance problem with DBF is that it takes a very
long time to update the routing tables of network nodes after network partitions,
node failures, or increase in network congestion. This performance problem of
DBF stems from the fact that it has no inherent mechanism to determine when a
network node should stop incrementing its distance to a given destination. This
problem is usually called the counting-to-in�nity problem.

The counting-to-in�nity problem is overcome in one of three ways in existing
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internet routing protocols. OSPF [12] relies on broadcasting complete topology
information among routers, and organizes an internet hierarchically to cope with
the overhead incurred with topology broadcast. BGP [16] exchanges distance
vectors that specify complete paths to destinations. EIGRP [1] uses a loop-free
routing algorithm called DUAL [8], which is based on internodal coordination
that can span multiple hops; DUAL also eliminates temporary routing loops.

However, there are signi�cant di�erences between wireless networks and wired
internets in which internet routing protocols are used. A wired internet has rela-
tively high bandwidth and topology that changes infrequently; in contrast, wire-
less networks have mobile nodes and have limited bandwidth for network control.
Accordingly, ooding, multihop internodal synchronization and the speci�cation
of complete path information would incur too much overhead in a multihop ra-
dio network with a dynamic topology. On the other hand, the routing protocols
based on DBF or modi�cations of DBF would take a long time to converge and the
frequent topology changes in a wireless network with mobile nodes make the loop-
ing problem of DBF unacceptable. Therefore, there is a need for a new routing
protocol which is devoid of all these drawbacks.

In the recent past, a number of e�orts have been made to address the limitation
of DBF and topology broadcast in mobile wireless networks. One such e�ort is
the DSDV protocol [14]. In this protocol, each mobile host, which is a specialized
router that periodically advertises its view of the interconnection topology with
other mobile hosts within the network to maintain up to date information about
the status of the network. Unfortunately, in DSDV a node has to wait until it
receives the next update message originated by the destination in order to update
its distance-table entry for that destination. This implicit destination-centered
synchronization su�ers from the same latency problems of DUAL and similar
algorithms based on explicit synchronization. Also, DSDV uses both periodic and
triggered updates for updating routing information, which could cause excessive
communication overhead.

A distributed routing algorithm for mobile wireless networks based on di�using
computations has been proposed by Corson and Ephremides [6]. This protocol
relies on the exchange of short control packets forming a query-reply process. It
also has the ability to maintain multiple paths to a given destination. This is
a destination-oriented protocol in which separate versions of the algorithm run
independently for each destination. Routing is source-initiated, which means that
routes are maintained by those sources which actually desire routes. Even though
this algorithm provides multiple paths to the destination, because of the query-
based synchronization approach to achieve loop-free paths, the communication
complexity could be high.

Recently, a number of distributed shortest-path algorithms have been pro-
posed [5, 7, 9, 10, 15] that utilize information regarding the length and second-
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to-last hop (predecessor) of the shortest path to each destination to eliminate
the counting-to-in�nity problem of DBF. We call this type of algorithms as path-
�nding algorithms. According to these algorithms, each node maintains the shortest-
path spanning tree reported by its neighbors. A node uses this information along
with the cost of adjacent links to generate its own shortest-path spanning tree.
An update message exchanged among neighbors consists of a vector of entries
that report updates to the sender's spanning tree; each update entry contains a
destination identi�er, the distance to the destination, and the second-to-last hop
of the shortest path to the destination.

Path-�nding algorithms are an attractive approach for wireless networks, be-
cause they eliminate counting-to-in�nity problem. However, these algorithms can
still incur temporary loops in the paths speci�ed by the predecessor before they
converge; without proper precautions, this can lead to slow convergence, or incur
substantial processing if a node is required to update its entire routing table for
each input event. To address these problems, we have proposed a path-�nding
algorithm, PFA, which substantially reduces temporary looping situations [13],
and which limits routing table updates to include only that entries a�ected by a
network change.

The rest of this paper describes a wireless routing protocol (WRP) for a packet
radio network based on PFA, illustrating the key aspects of the protocol's opera-
tion. The following sections show that the protocol is correct (i.e., that it produces
correct routing tables within a �nite time after topology changes) and compares
its performance with that of DBF, DUAL and an ideal link state algorithm (ILS)
which uses Dijkstra's shortest path algorithm.

ILS consists of ideal ooding of link-state updates in order to replicate the
topology of the network at each router; ideal ooding means that in�nite sequence
numbers can be used to validate link-state updates, and that all such updates are
successfully delivered at every router.

2 { Wireless Routing Protocol

2.1 { Overview

To describe WRP, we model a network as an undirected graph represented as
G(V;E), where V is the set of nodes and E is the set of links (or edges) connecting
the nodes. Each node represents a router and is a computing unit involving a
processor, local memory and input and output queues with unlimited capacity.
In a wireless network, a node has radio connectivity with multiple nodes and a
single physical radio link connects a node with many other nodes. However, for
the purposes of routing-table updating, a node A can consider another node B
to be adjacent (we call such a node a \neighbor") if there is radio connectivity
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between A and B and A receives update messages from B. Accordingly, we map
a physical broadcast link connecting multiple nodes into multiple point-to-point
functional links de�ned for these node paths that consider to be neighbors of each
other.

Then, a functional bidirectional link connecting the nodes is assigned a posi-
tive weight in each direction. All messages received (transmitted) by a node are
put in an input (output) queue and are processed in FIFO order. The communi-
cation links in the network are such that all update messages transmitted over an
operational link are received in the order in which they were transmitted within
a �nite time.

A link is assumed to exist between two nodes only if there is radio connectivity
between the two nodes and they can exchange update messages reliably with a
certain probability of success. When a link fails, the corresponding distance entries
in a node's distance and routing tables are marked as in�nity. A node failure is
modeled as all links incident on that node failing at the same time.

WRP is designed to run on top of the medium-access control protocol of a
wireless network. Update messages may be lost or corrupted due to changes
in radio connectivity or jamming. Reliable transmission of update messages is
implemented by means of retransmissions. After receiving an update message free
of errors, a node is required to send a positive acknowledgment (ACK) indicating
that it has a good radio connectivity and has processed the update message.
Because of the broadcast nature of the radio channel, a node can send a single
update message to inform all its neighbors about changes in its routing table;
however, each such neighbor sends an ACK to the originator node.

In addition to ACKs, the connectivity can also be ascertained with the receipt
of any message from a neighbor (which need not be an update message). To
ensure that connectivity with a neighbor still exists when there are no recent
transmissions of routing table updates or ACKs, periodic update messages without
any routing table changes (null update messages) are sent to the neighbors. The
time interval between two such null update messages is the HelloInterval.

If a node fails to receive any type of message from a neighbor for a speci�ed
amount of time (e.g., three or four times the HelloInterval known as the Router-
DeadInterval), the node must assume that connectivity with that neighbor has
been lost.

2.2 { Information Maintained at Each Node

For the purpose of routing, each node maintains a distance table, a routing table,
a link-cost table and a message retransmission list.

The distance table of node i is a matrix containing, for each destination j

and each neighbor of i (say k), the distance to j (Di
jk) and the predecessor (pijk)

reported by k.
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Procedure Init1
when router i initializes itself
do begin

set a link state table with costs of adjacent links;

N  i; Ni  x j lix <1;
for each (x 2 Ni)
do begin

Ni  N [ x; tagix  null;

six  null; pix  null; Dix  1
end

Di
i
 0; si

i
 null; pi

i
 null; tagi

i
 correct

for each j 2 N call Init2(x; j)
for each (n 2 Ni) do add (0; i; 0; i) to LISTi(n)
x retransmission time; y  hello count;
z  retransmission count;
call Send

end

Procedure Init2(x; j)
begin

Di
jx
 1; pi

jx
 null; si

jx
 null; seqnoi

jx
 0

end

Procedure Send
begin

for each (n 2 Ni)
do begin

if (LISTi(n) is not empty)
then send messages with LISTi(n) to n
empty LISTi(n)

end
end

Procedure Message
when router i receives a message on link (i; k)
begin

if (k 62 Ni) do
begin
Ni  Ni [ k;

li
k
 cost of new link;

if (k 62 N) begin

N  N [ k; tagi
k
 null;

Di
k
 1; pi

k
 null; si

k
 null;

for each x 2 Ni do call Init2(x; k)
end

for each (i; k; li
k
) do

send update(0; k; Di
k
; pi
k
)

end
reset HelloTimer;

for each entry (uk
j
; j;RDk

j
; rpk

j
) j i 6= j

do begin
if (j 62 N)
then begin

if (RDk
j
= 1) then delete entry

else begin
N  N [ j;
for each entry x 2 Ni call Init2(x; j)

tagi
j
 null; call DT

end
end
else begin

tagi
j
 null;

end
end

for each entry (uk
j
; j;RDk

j
; rpk

j
) left j i 6= j

do case of uk
j

0: call Update(j; k)
1: call ACK(j; k)

end

call Send
end

Procedure Create RList(seqno)
begin

seqno seqno + 1; NeighborSet Ni
bitmap[] 0; RetransmissionTimer  x

add updates to RList
end

Procedure Delete RList(seqno)
begin

set bitmap[seqno] 1; delete 1
for all n 2 Ni begin

if (bitmap[seqno] = 0) delete 0;
end
if (delete = 1) delete RList[seqno] end

Procedure Update RList(seqno)
begin

reset RetransmissionTimer
send update RList[seqno];

end

Procedure Clean RList (seqno)
begin
for all entries in RList

delete RList[seqno];
end

Procedure Connectivity
when HelloTimer expires
begin

HelloCount[k] HelloCount[k] + 1;
if (HelloCount[k] < y) then
reset HelloTimer;

else begin
Ni  Ni � k

call Delete RList(k)

li
k
 1

tagi
k
 null

delete column for k in distance table
update routing table

end
end

Procedure TimeOut(i; k)
when RetransmissionTimer expires
begin

RetransmissionCounter  RetransmissionCounter - 1;
if (RetransmissionCounter < z)
call Update RList(k)

else begin
Ni  Ni � k

call Delete RList(k)

li
k
 1

tagi
k
 null

delete column for k in distance table
update routing table

end
end

Procedure DT
when distance table update has to be done
begin

Di
jk
 li

k
+Dk

j
; pi
jk
 pk

j
;

(2) for all neighbors b
do begin

if k is in the path from i to j in
the distance table through neighbor b

then Di
jb
 Di

kb
+Dk

j
; pi
jb
 pk

j
end

end

Figure 1: Protocol Speci�cation
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Procedure ACK(n)
when router i receives an ACK on link (i; k)
begin

call Delete RList(n);
RetransmissionCounter  z;

end

Procedure Update(i; k)
when router i receives an update on link (i; k)
begin

send ACK to neighbor k
RetransmissionCounter  z;
RetransmissionTimer  x;

(0) begin
update=0;

RTEMPi  �;

DTEMPi;b  � for all neighbors b

(1) for each triplet (j;Dk
j
; pk
j
) in V k;i; j 6= i do

call procedure DT
(3) begin

if there are b and j such that

(Di
jb

< Di
j
) or ((Di

jb
> Di

j
) and (b = si

j
))

then call RT Update
end

(4) begin if (RTEMPi 6= �) then
for each neighbor b do begin

for each triplet t = (j;Di
j
; pi
j
) in RTEMPi

do begin
if b is not in the path from i to j

then DTEMPi;b  DTEMPi;b [ t;
end

send DTEMPi;b to neighbor b;
end

end
end

Procedure RT Update
when routing table has to be updated
begin

�nd minimum of the distance entries DTmin
if (Di

j si
j

= DTmin) then ns si
j

else ns b j fb 2 Ni and Di
jb

= DTming;

x j;

while (Dix ns = MinfDi
xb
8 b 2 Nig

and Dixns
<1 and tagix = null)

do x  pix ns;

if (pix ns = i or tagix = correct)

then tagi
j
 correct else tagi

j
 error

if (tagi
j
= correct) then begin

if (Di
j
6= DTmin or pi

j
6= pi

j ns
) then begin

seqno seqno+ 1;

add (0, j, DTmin, p
i
j ns

; seqno) to LISTi(x) 8x 2 Ni;

call Clean RList(seqno)
call Create RList(seqno)

end

Di
j
 DTmin; p

i
j
 pi

j ns
; si
j
 ns

end
else begin

if(Di
j
<1) then begin

seqno seqno + 1;
add (0, j, 1, null, seqno) to LISTi(x) 8x 2 Ni ;
call Clean RList(seqno)
call Create RList(seqno)

end

Di
j
 1; pi

j
 null; si

j
 null

end
end

Figure 2: Protocol Speci�cation (Cont..)

The routing table of a node i is a vector with an entry for each known desti-
nation j which speci�es:

� The destination's identi�er

� The distance to the destination (Di
j)

� The predecessor of the chosen shortest path to j (pij)

� The successor (sij) of the chosen shortest path to j

� A marker (tagij) used to update routing table; it speci�es whether the entry

corresponds to a simple path (tagij = correct), a loop (tagij = error) or a

destination that has not been marked (tagij = null).

The link-cost table of node i lists the cost of relaying information through
each neighbor k, and the number of periodic update periods that have elapsed
since node i received any error-free messages from k.

The cost of a failed link is considered to be in�nity. The way in which costs
are assigned to links is beyond the scope of this speci�cation. As an example, the
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cost of a link could simply be 1 reecting the hop count, or the addition of the
latency over the link plus some constant bias. The cost of the link from i to k
(i; k) is denoted by lik.

The message retransmission list (MRL) speci�es one or more retransmission
entries, where the mth entry consists of the following:

� The sequence number of an update message

� A retransmission counter that is decremented every time node i sends a new
update message

� An ack-required ag (denoted by aikm) that speci�es whether node k has sent
an ACK to the update message represented by the retransmission entry

� The list of updates sent in the update message

The above information permits node i to know which updates of an update
message (each update message contains a list of updates) have to be retransmit-
ted and which neighbors should be requested to acknowledge such retransmission.
Node i retransmits the list of updates in an update message when the retransmis-
sion counter of the corresponding entry in the MRL reaches zero. The retrans-
mission counter of a new entry in the MRL is set equal to a small number (e.g.,
3 or 4).

2.3 { Information Exchanged among Nodes

In WRP, nodes exchange routing-table update messages (which we call \update
messages" for brevity) that propagate only from a node to its neighbors. An
update message contains the following information:

� The identi�er of the sending node.

� A sequence number assigned by the sending node.

� An update list of zero or more updates or ACKs to update messages. An
update entry speci�es a destination, a distance to the destination, and a pre-
decessor to the destination. An ACK entry speci�es the source and sequence
number of the update message being acknowledged.

� A response list of zero or more nodes that should send an ACK to the update
message.

In the event that the message space is not large enough to contain all the
updates and ACKs that a node wants to report, they are sent in multiple update
messages. An example of this event can be the case in which a node identi�es a
new neighbor and sends its entire routing table.
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The response list of the update message is used to avoid the situation in which
a neighbor is asked to send multiple ACKs to the same update message, simply
because some other neighbor of the node sending the update did not acknowledge.

The �rst transmission of an update message must ask all neighbors to send
an ACK, of course, and this is accomplished by specifying the \all-neighbors
address," which consists of all 1's.

When the update message reports no updates, the \empty address" is speci-
�ed; this address consists of all 0's and instructs the receiving nodes not to send
an ACK in return. This type of update message is used as a \hello message" from
a node to allow its neighbors to know that they maintain connectivity, even if no
user messages or routing-table updates are exchanged.

As we explain subsequently, an ACK entry refers to an entire update message,
not an update entry in an update message, in order to conserve bandwidth.

2.4 { Routing-Table Updating

Figures 1 and 2 specify important procedures of WRP used to update the routing
and distance tables.

A node can decide to update its routing table after either receiving an update
message from a neighbor, or detecting a change in the status of a link to a neighbor.
When a node i receives an update message from its neighbor k, it processes each
update and ACK entry of the update message in order.

In WRP, a node checks the consistency of predecessor information reported
by all its neighbors each time it processes an event involving a neighbor k. In
contrast, all previous path-�nding algorithms [5, 10, 15] check the consistency of
the predecessor only for the neighbor associated with the input event. This unique
feature of WRP accounts for its fast convergence after a single resource failure or
recovery as it eliminates more temporary looping situations than previous path-
�nding algorithms.

Processing an Update: To process an update from neighbor k regarding des-
tination j, the distance and the predecessor entries in the distance table are up-
dated. A ag (tag) is set to specify that this entry in the table has been changed.
A unique feature of WRP is that node i also determines if the path to destina-
tion j through any of its other neighbors fb 2 Nijb 6= kg includes node k. If the
path implied by the predecessor information reported by node b includes node k,
then the distance entry of that path is also updated as Di

jb = Di
kb +Dk

j and the

predecessor is updated as pijb = pkj . Thus, a node can determine whether or not
an update received from k a�ects its other distance and routing table entries.

To update its distance and predecessor for destination j (procedure RT Update),
node i chooses a neighbor p that has reported routing information such that:
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� The path from p to j (which is implied by the predecessor information re-
ported by p) does not include node i

� Di
jp � Di

jx for any other neighbor x, and Di
yp � Di

yx for any other neighbor
x and for every node y in the path from i to j.

The above means that node i chooses node p as its successor to a destination
j if that neighbor appears to o�er a smallest-cost loop-free path to j and all the
intermediate nodes in the path to j.

When node i sends an update message, it updates its message retransmission
list. For each destination j for whom there is an update being reported, node
i sets the ack-required ag for all its neighbors. It also adds an entry in the
message-retransmission list containing the sequence number given to the update
message, and starts the retransmission timer for that entry.

Sending New and Retransmitted Update Messages: Node i sends a new
update message after processing updates from its neighbors or detecting a change
in a link to a neighbor. Whenever node i sends a new update message, it must

� Decrement the retransmission counter of all the existing entries in the MRL

� Delete the updates in existing entries in the MRL that are included in the
new update message

� Add an entry in the MRL for the new update message

When the list of updates of a MRL entry is emptied by the transmission of a
new update message, node i erases that entry from the MRL.

When the retransmission counter for a retransmission entry m in the MRL
expires, node i sends an update message with a new sequence number, an update
list containing the list of updates of the retransmission entry, and a response list
specifying those neighbors who did not acknowledge the update message earlier
(i.e., every neighbor k for whom aikm = 1). The retransmission counter of existing
entries in the MRL is not modi�ed.

Note that, based on the above retransmission strategy, there is no limit on
the number of times node i would retransmit an update message to an existing
neighbor. However, as we discuss below, node i stops considering node k as its
neighbor after it fails to communicate with it for some �nite amount of time.

Processing an ACK: An ACK entry in an update message refers to another
entire update message, i.e., it acknowledges all the updates included in the up-
date message bearing the referenced sequence number. Therefore, it is up to the
node whose update message is being acknowledged to ascertain which updates are
implied by a received ACK.
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To process an ACK from neighbor k, node i scans its MRL for the sequence
number matching the sequence number speci�ed in the ACK received. Whenever
a match is found, node i resets the ack-required ag for neighbor k; if aipm = 0
for entry m and every neighbor p of node i, the retransmission entry is deleted.
This scheme obtains short ACKs at the expense of additional processing.

Node i may receive an ACK for an update message whose retransmission en-
try has been erased after sending a more recent update message for the same
destinations. In that case, node i simply ignores the ACK.

Handling Topology and Link-Cost Changes: To ensure that nodes know
that they have connectivity even when they do not transmit user messages or
routing-table updates for some time, every node i must periodically send an up-
date message reporting no changes (hello messages). Acknowledgments are not
required for such update messages, and they can be very short (e.g., a byte for
control information and a byte for the node identi�er, since the control informa-
tion can imply that there is no sequence number, update list, or response list in
the message). Alternatively, a node may retransmit an update message if it is not
too long. When a node k comes up, it transmits a hello message.

Given that short periodic update messages are transmitted by every node,
the failure of a link to a neighbor is detected by the lack of any user or update
messages being received from that neighbor over a period of time equal to a few
update-message transmission periods. Similarly, new links and nodes are detected
by means of update messages or user messages.

When node i receives an update or user message from node k and node k is
not listed in its routing table or distance table, it adds the corresponding entry
to its distance or routing table for destination k. An in�nite distance to all
destinations through node k is assumed, with the exception of node k itself and
those destinations reported in node k's updates, if the message received from k

was an update message. In addition, node i noti�es node k of the information in
its routing table. This information can be transmitted in one or multiple update
messages that only node k needs to acknowledge.

When a link fails or a link-cost changes, node i recomputes the distances and
predecessors to all a�ected destinations, and sends to all its neighbors an update
message for all destinations whose distance or predecessor have changed.

2.5 { Example

The following example illustrates the working of WRP. Consider a four node
network shown in Figure 3(a). All links and nodes are assumed to have the same
propagation delays. Link-costs are as indicated in the �gure. Node i is the source
node, j is the destination node and nodes k and b are the neighbors of node i. The
arrows next to links indicate the direction of updates messages and the label in
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K

B

(0,J)
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(2,K)

(10,I)

(0,J)

(10,B)

(0,J)

(2,K)
(2,K)

(0,J)

(11,B)

Figure 3: Example of the algorithm's operation

parentheses gives the distance and the predecessor to destination j. Each update
will be acknowledged by an ACK message from the neighbor. ACKs are not shown
in the �gure. The �gure focuses on update messages to destination j only.

When link (j; k) fails, nodes j and k send update messages to their neighboring
nodes as shown in Figure 3(b). In this example, node k is forced to report an
in�nite distance to j as nodes b and i have reported node k as part of their
path to destination j. Node b processes node k's update and selects link (b; j)
to destination j. This is because of step(2) of WRP which forces node b to
purge any path to node j involving node k. Also, when i gets node k's update
message, i updates its distance table entry through neighbor k and checks for the
possible paths to destination j through any other neighboring nodes. Thus, a node
examines the available paths through its other neighboring nodes and updates the
distance and the routing table entries accordingly. This results in the selection of
the link (i; j) to the destination j (Figure 3(c)). When node i receives neighbor b's
update reporting an in�nite distance, node i does not have to update its routing
table as it already has correct path information (Figure 3(d)). Similarly, updates
sent by node k reporting a distance of 11 to destination j will not a�ect the path
information of nodes i and b. This illustrates how the method used in WRP to
update a node's distance table (Step (2) in Procedure DT) helps in the reduction
of the formation of temporary loops in the explicit paths.
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3 { Correctness of WRP

In this section, we show that the basic routing algorithm used in WRP is correct.
The following assumptions are made on the behavior of links and routers for the
working of WRP.

1. Messages are transmitted reliably. A lower-level protocol is responsible for
maintaining the status of the link.

2. Messages are sent by a router over a link only when the link is perceived as
being up.

3. A router that is not functional cannot receive or send any messages.

4. All routers are initially down.

5. Update messages received by a router are processed in the order of their
arrival (FIFO).

6. Link lengths are always positive and a failed link has an in�nite length.

7. Time T is de�ned such that between the time interval 0 and T links and
routers go up and down and the cost of the link changes; at time T , links
have the same status at both ends and there are no changes after time T .

For simplicity, the following proof assumes that all update messages sent over
an operational link are received correctly. In practice, WRP handles errors by
means of retransmissions. In terms of the correctness proof, the e�ect of retrans-
missions is that of added delay in the delivery of an update message to a neighbor,
and a link fails when a given number of retransmissions have been attempted. In
essence, this proof shows that the path-�nding algorithm (PFA) on which WRP
is based is correct.

De�nition 1

The link weight dij for link (i; j) is extracted from the distance table Dv at a router
v if there is a column k in Dv such that dij = Dv

jk �Dv
ik and pvjk = i. Similarly,

the link weight for link (i; j) can be extracted from the routing table if dij agrees
Dv

j �Dv
i , where p

v
j = i.

Lemma 1

If a routing table is generated by PFA based on the distance table, any link weight
that can be extracted from this routing table can be extracted from a column in the
distance table.
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Proof

Let Nv denote the set of neighbors of router v. Let dij be the link weight extracted
from the routing table of node v. By de�nition 1, the cost of the link can be
extracted from the routing table as (Dv

j � Dv
i ), the predecessor pvj = i and the

successor svi = k, from the function RT Update. The procedure RT Update

requires each distance in the routing table to be the minimum among the rows
corresponding to the same destination in the distance table entry of the router as
de�ned by the distributed Bellman-Ford algorithm. Therefore, Lemma 1 is true.

Lemma 2

When a node comes up and initializes its distance table, the link weight that can
be extracted from any of its distance table entries is the weight of the link.

Proof

The recovery of a router can be viewed as all the links connected to that router
coming up. Initially, when the router is down, its distance table entries will have
in�nite distance. A link coming up will be recorded as a single entry in the
distance vector, which is nothing but the weight of the link. Therefore, the link
weight extracted from any column in the distance table is the weight of that link.

Lemma 3

The link cost change of a link will be reected in the distance and the routing
tables of a neighboring router after a �nite time T .

Proof

The change in the link cost can be due to the link coming up, the link going down,
or the cost of the link changing.

When a link comes up, a new column entry will be added to the distance table
and the new link cost will be assigned to the corresponding entry in the distance
table. Procedure RT Update will be called, which eventually updates the routing
table entry.

When a link goes down, the column entry will be deleted and the distance
entries in the distance table will be set to 1. The procedure RT Update again
updates the routing table entries accordingly.

When the link cost changes, the distance entry in the distance table is updated
to reect the new link cost (Step (1) and Step (2)). These changes will be updated
in the routing table again by the procedure RT Update.

From assumption (8) we have, any change that occurs in the time interval
(0; T ) will be updated by time T . This implies that the link cost changes will be
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reected in the distance and routing tables of nodes adjacent to the links within
a �nite time T .

Property 1

After a �nite time interval T , the routing table structures at all routers will form
the �nal shortest path.

Proof

The proof consists of the following two parts:

1. The old topology information present in the router's routing and distance
tables is updated.

2. The shortest-path trees are eventually computed.

Let the initial time be T (0) = T . Let T (K) be the time by which all messages
that are in transit at time T (K� 1); K � 0, have arrived at their destination and
have been processed. The proof is done by induction on K. At time K = 0, the
property holds true. Assume that the property is true for 0 � K �M .

A path of M + 1 links can be a concatenation of an adjacent link and a path
with M links, or a concatenation of next 2 and M � 1 links, or next 3 and M � 2
links and so on. This we can generalize as the concatenation of l and M � l + 1
links. From the assumptions, by time T (M + 1), the routing trees at time T (M)
of the routers have all been communicated to their neighboring routers. This is
true for any M =M � l. By Lemma 3, these link cost changes will be updated in
the router's distance and routing tables within a �nite time T . This proves �rst
part of the property.

The change in the link cost will result in a routing table update (in procedure
RT Update) as required. When a router has to select a new path, the minimum in
row entry for that destination router will be chosen from the distance table entries
resulting in the shortest path in the �nal graph all along the way. This implies
that the routing table structures at all routers form the �nal shortest path.

Theorem 1

If the distance entries in the distance and routing tables are �nite, then a path can
be extracted from the distance and routing table entries and this extracted path is
loop-free.

Proof

Let T (K = 0) be the initial time when the algorithm begins execution. The
theorem is true for K = 0 since no link exists between routers at time t = 0.

Assume that the property is true for T (M); 0 �M � K � 1. By time T (K),
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all the routing changes at time T (K � 1) would have been communicated to
all routers (assumption). No router will be marked as undetermined as all the
distance entries are �nite.

When a router recovers, within a time T (K � 1), the information about the
change in the link cost will be communicated within a �nite time (by Lemma 3).
As all the entries in the table are �nite, a path can be extracted from any router
i to any other router j by traversing through the distance and the routing tables.

When a particular link is selected as a path from i to j, the loop freeness of
the path is checked in step 2 and RT Update. An update message about the link
cost change will be sent to the neighbor. The loop-freeness of the update messages
can be veri�ed by traversing from destination router to the source router using
predecessor information present in each entry of the distance and routing tables.

Therefore, the paths in the �nal graph are loop-free.

The following theorems prove that PFA terminates in such a way that the
distance to any other router maintained in the routing table in each router is the
shortest distance of the �nal graph and the distance to any unreachable router is
marked as undetermined.

Property 2

If router j is not connected to router i in the �nal topology, then the distance
between the two routers is equal to in�nity for all time after T (H(i;1) + 1).

Proof

If a router i does not have a path to router j, the distance entries in the router
i's tables will be set to 1 (from the algorithm description). Let H(i; d) be the
maximum number of links in the path from i whose distance to any other router
is less than or equal to d in the �nal topology. This implies H(i; d) is a �nite
quantity.

By Property 1, all the paths with links less than or equal to H(i;1) will have
their �nal length by time T (H(i;1) + 1). This proves Property 2.

Theorem 2

PFA terminates within a �nite time after the last topological change happened.

Proof

Assume that the algorithm does not terminate. This implies that there must
be an in�nite number of messages sent after the last topological change. These
in�nite messages must have �nite distances since from Property 2 if the distance
between the two routers is equal to in�nity, the algorithm converges. Moreover,
from Theorem 1, the path extracted from the distance table must be a simple
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path. Thus, there must be some neighbor b that sends �nite distances an in�nite
number of times to node i for node i to send messages without stopping.

Each time router i sends a message, it can be due to any one of the following
reasons

1. It receives Db
j from b and Di

j = Db
j + dib where dib is the link weight

2. Di
j has been in router i's distance table when it receives a message from b

3. Neighbor b is in the path from i to j through another neighbor k(6= b) and
Di

jk = Di
bk +Db

j (Step (2))

If the �rst case happens in�nite times, router b sends Db
j in�nite times and

Db
j = Di

j � dib < Di
j because dib > 0.

The second case can happen in a situation where Di
j is not stable. This means

thatDi
j is changed forever, which is similar to the �rst case in that there must be a

neighbor b
0
such that b

0
sends Db

0

j in�nite times and Db
0

j = Di
j�dib0 < Di

j , because

d
ib
0 > 0. Else, if Di

j becomes stable, then there must be an in�nite number of

times in which router i receives a distance that is shorter than Di
j .

For the third case to happen an in�nite number of times, Di
jk must be changed

forever. This in turn means that a neighbor has to send the distance vector Db
j

in�nite times. This reduces to case (2) and eventually to case (1).

Consequently, there must be a neighbor b
0
sending Db

00

j in�nite times and

Db
00

j = Di

jb
00 ��d

ib
00 < Di

j � d
ib
00 < Di

j because dib00 > 0.

Therefore, in all of the cases, there must be a router that will in�nitely generate
messages with a distance at least w less thanDi

j , where w is the minimum distance
of the �nal graph. This will consequently contradict that all the distances are
positive by recursively applying the above argument.

Property 3

When PFA terminates, the link weights maintained in the distance table must be
in the �nal graph.

Proof

This proof is by induction. When a router comes up, its distance entries in the
distance and routing tables are maintained correctly by Lemmas 1 and 2 and
Property 1. If a link is not in the �nal graph, it implies that router must have
detected a link failure that caused it to delete the corresponding column entry
from the distance table entry of the router and the distance is marked as in�nity.
If the distance in the �nal graph dij is di�erent from the earlier distance, the router
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i must have been noti�ed about this link-cost change by its neighbor. Thus, the
correct distance entries are maintained in the �nal graph for all adjacent routers.

Assume that the result is true for nodes that are k hops away from i.
We will show by induction that the result is true for routers that are k + 1

hops away from i. Let j be a router that is k+1 hops away from router i and a be
a router that is k hops away from i. Since all routers that are k hops away from
i maintain the distance entries correctly, the distance entry is correct for router
a. The distance from j to i is the sum of dja and Da

i (step 1 of the algorithm).
This is nothing but the minimum of the distances from i to j and hence is the
shortest-path from i to j. Therefore, this distance entry will be present in the
�nal graph unless the link has gone down before the algorithm terminates in which
case, an in�nite distance will be maintained. This proves the property.

Theorem 3

When PFA terminates, the distance for any router i to any other router j in the
routing table of router i is the shortest distance from i to j in the �nal graph and
the successor will be maintained correctly; furthermore, the distance from router
i to any unreachable router is marked as undetermined.

Proof

We prove the theorem by induction.
>From Lemma 3, the weight of any link must be maintained by its adjacent

node. When a link comes up, the cost of the link will be assigned to the distance
table entry (neighbor router) and the predecessor will be initialized to be the
source router itself. A check is made to see whether the distance table entry
is smaller than the routing table entry and the routing table will be updated
according to the procedure RT Update with the successor and the predecessor
entries properly set. If the link is in the path to the destination through any
other neighboring routers, then the distance and the routing table entries will
also be updated.

Assume that the result is true for a node j that is k hops away from router i.
We will show by induction that the result is true for a router k+1 hops away

from i. Consider a router j that is k + 1 hops away from i. There must be a
neighbor b of router j that is k hops away from i and that maintains correct
distance and routing table entries. Let djb denote the distance between router j
and its neighbor router b which are k + 1 and k hops away from i respectively.
Let Di

b be the distance from i to b. Di
b is the shortest path from i to b as Di

b is
the minimum in row of distance table for router b and each distance table entry
represents an existent path,

Since b is a neighbor of j, Di
j = Di

b+dbj is the shortest path from i to j, with
dbj being the minimum in row entry. The predecessor path will also be maintained
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Figure 4: Complexity

correctly (from step 1). Furthermore, any router x in the shortest path from i to
j must also have the subpath from x to i as the shortest path because it is the
minimum in the row of x.

The RT Update procedure is called in the update routine after updating all
the distance table entries of that router. This routine picks up a minimum entry
through one of its neighbors and will have a successful trace for the destination
router j and thus will have Di

j = Di

ji
0 = Di0

j + d
ii
0 = Di

j and s
i
j = b.

4 { Complexity Analysis

WRP's time complexity is O(h) in the worst-case, where h is the height of the
routing tree. Theorem 4 below proves this result. Time complexity is de�ned as
the largest time that can elapse between the moment T when the last topology
change occurs and the moment at which all the routers have �nal shortest path
and distances to all other routers. Communication complexity is de�ned as the
maximum number of node identities exchanged (messages) after time T before
the �nal graph is reached.

Consider Figure 4. The weight of the links are as indicated. Assume nd is
the destination router. Routers n1, n2, n3 and n4 will have the shortest path
router nx before link (nd,nx) fails. After the link failure, routers n1, n2, n3 and n4
immediately identify that the only possible way to reach the destination router nd
is through the link (ni,nd) for i = 1,2,3,4 upon receiving an update message from
router nx about the link failure, instead of going through an intermediate step
of selecting the path through routers n2, n3 and n4 respectively as in the case of
any other path-�nding algorithm. That is, the routers need not have to wait for
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an update message from the neighbor n2, n3 and n4 before arriving at the �nal
graph. This reduces the number of update messages required.

Theorem 4

The time complexity for a single failure/change for WRP is O(h) in the worst-
case, where h is the maximum height of the routing tree experienced during the
computation.

Proof

Consider a source router i and a destination router j. Let the changed link be
(n;m) and node m is a router downstream to router n. There are four possible
situations involving the shortest path from i to j.

1. (n;m) is not on the shortest path and its length does not change enough to
change the shortest path.

2. (n;m) is not on the shortest path and its length decreases enough that it
becomes part of the shortest path.

3. (n;m) is on the shortest path and its length does not change enough to
modify the shortest path (although the length of the shortest path changes).

4. (n;m) is on the shortest path and its length increases enough that the short-
est path changes.

A router with the initial shortest path not going through the changed link
(Case (1)) does not change its routing table since the original shortest path is not
changed and the change in the link cost has resulted only in the increase in the
path length through other routes.

In Case (2), router is aware of the change in the link cost along the shortest
path after a delay not exceeding the number of links on the new shortest path.
In Case (3) the change will be noticed in the worst case after a delay of at most
the number of links in the shortest path.

For Case (4), let router nk with the original shortest path through the changed
link be k hops away from router n on the initial shortest path. When a link
distance changes or a link fails, the node containing the failed link selects a new
neighbor (changes the successor) for a path to a destination j. This changes the
routing table entry at router n and the routing vector generated due to link failure
will be sent to all its neighbors. Each of these neighbors will update their table
entries and the change in the link cost propagates. This process continues until
a stable router which does not change its successor is encountered. The tables
are updated either on the receipt of an update message or if the distance update
received from a router's neighbor has any e�ect on the router's other distance
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table entries. The distance of the stable node found in the path from i to j in the
new shortest path is bounded by h, the height of the tree. Therefore, in the worst
case, the number of steps required for a router to converge to its correct distance
is O(h).

5 { Simulation Results

To gain insight into the average-case performance of WRP in a dynamic environ-
ment, we have simulated its operation using an actor-based, discrete-event sim-
ulation language called Drama [17], together with a network simulation library.
The library provides a standard input syntax and a framework for constructing
simulations consisting of routers attached to each other via links. Drama itself is
an extension to C.

The network simulation library treats both routers and links as actors. Routers
send packets over links by using the function-call interface to the link's actors, but
they receive packets by responding to messages delivered from the input queue.
Link failures and recoveries are simulated by sending link status message to the
nodes at the end points of the appropriate links. In the link models used in the
simulation, each link responds to an update packet by encapsulating the packet as
a message and sending the message to the link itself. Node failures can be treated
as all links connecting to that node going down at the same time and the link cost
changes can be treated as a link failing and recovering with a new link cost.

The connectivity of a mobile node is said to be lost when a node does not hear
from a mobile node for a certain period of time. The connectivity with a node
will be reestablished when a node hears from a mobile node again. Mobility is
modeled as an arbitrary set of failures and recoveries of a mobile node at random
points in time. All simulations are done assuming unit propagation time and zero
packet processing time at each node. If a mobile node fails when the packets are
in transit, the packets are assumed to get dropped.

Our goal is to compare the performance of WRP against the performance
of routing protocols based on DBF, DUAL, and ILS. To reduce the complexity
of the simulation, we have eliminated those features of the protocols that were
common to all; these features concern the reliable transmission of updates over
unreliable links, and the identi�cation of neighbors. Accordingly, our simulation
assumed that, for any of the protocols simulated, any update message sent over
an operational link is received correctly, and that a node always receives enough
user messages to know that it continues to have connectivity with a neighbor.
According to these assumptions, there is no need to account for acknowledgments,
retransmissions of updates, or periodic transmissions of update messages.

However, our intent in running the simulations was to obtain insight on the
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Figure 5: ARPANET Link Failure
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Figure 7: ARPANET Node Failure

comparative overhead of di�erent protocols that necessarily require the transmis-
sion of acknowledgments to update messages. We approached this problem in the
following manner: In a wireless packet radio network, the same update messages
sent by a node is received by all its neighbors, i.e., each update message is broad-
cast to a node's neighbors. However, to guarantee the reliable transmission of
updates, each neighbor must send an acknowledgment to the sender of the up-
date. Therefore, under the assumption that no errors or collisions occur in the
network channel, counting the number of acknowledgments received for a single
update broadcast to all neighbors is much the same as counting the number of
updates sent by a node to its neighbors on a point-to-point basis and with no
acknowledgments|the two counts di�er only by one. Accordingly, we simulated
the routing protocols' operation in a wireless network using the same point-to-
point links typical of wireline networks. The message count obtained from the
simulation runs is not the exact number of updates and acknowledgments sent by
each protocol, but accurately reects the relative di�erences among protocols.

The resulting simpli�ed version of WRP we simulated is simply the path
�nding algorithm (PFA), and is the same basic algorithm �rst described in [13].
Similarly, ILS, DBF, and DUAL correspond to the ideal case of the best protocols
that could be designed based on these algorithms.

To simulate the routing algorithm, a node receives a packet and responds to it
by running the routing algorithm, queueing the outgoing packets and processing
the updates one at a time in the order in which they arrive. Drama's internals
ensure that all the packets at a given time are processed before new updates are
generated.
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Figure 8: ARPANET Node Recovery

The simulations were run on several network topologies such as Los-Nettos,
Nsfnet and Arpanet. We chose these topologies to compare the performance of
routing algorithms for well-known cases given that we cannot sample a large
enough number of networks to make statistically justi�able statements about how
an algorithm scales with network parameters. The los-nettos topology has 11
nodes, a diameter of 4 hops, and each node has at most four neighbors. The
Nsfnet topology has 13 nodes, a diameter of 4 hops, and each node has at most
4 neighbors. The ARPANET topology has 57 nodes, a diameter of 8 hops, and
each node has a maximum of four neighbors.

For the routing algorithms under consideration, there is only one shortest
path between a source and a destination pair and we do not consider null paths
from a node to itself. Data are collected for a large number of topology changes
to determine statistical distribution. The statistics has been collected after each
failure and recovery of a link. To obtain the average �gures, we make each link (or
node) in the network fail and count the number of steps and messages required for
each algorithm to converge. Then the same link (node) is made to recover and the
process is repeated. The average is taken over all failures and recoveries. Again,
this message count is not exact, but the relative di�erence from one protocol to
another is accurate.

5.1 { Total Response to a Single Resource Change

The graphs in Figures 5 and 6 depict the number of messages exchanged and the
number of steps required before PFA, DBF, DUAL, and ILS converge for every
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link failing and recovering in the ARPANET topology. We focus more on the
results for the ARPANET topology, because of its larger size. Similar graphs for
every node failing and recovering are given in Figures 7 and 8 respectively. All
topology changes are performed one at a time and the algorithms were allowed
to converge after each such change before the next resource change occurs. The
ordinates of the graphs represent the identi�ers of the links and the nodes while
the data points show the number of messages exchanged after each resource change
(graphs on the left hand side) and the number of steps needed for convergence
(graphs on the right hand side) in each of these �gures.

For a single resource failure, PFA outperforms DUAL. This is because, PFA
does not use an internodal coordination mechanism that spans several hops to
achieve loop freedom. The performance of PFA is comparable to that of ILS after
resource failures. The performance of PFA and DUAL is much better than that
of ILS after resource recoveries. The counting-to-in�nity problem of DBF can be
clearly seen in both resource failures and resource recoveries. Given that both
resource recoveries and failures will occur in the WRP, PFA o�ers the best total
response to single topology changes, in terms of both update messages and time
required to obtain correct routing tables after a topology change.

5.2 { Dynamics with Mobile Nodes

We modeled mobility in the simulation by making the links fail and come back
up arbitrarily at random points in time. The network is assumed to be fully
connected with potential links. At startup, the topology is initialized to some well
known topology, such as los-nettos, Nsfnet or ARPANET. After initialization, to
simulate the movement of a node, a node is assumed to have failed at its previous
location and reappear in its new location. Node failure is simulated as all the links
associated with that node going down at the same time. The gradual movement
of a node from one location to another is simulated by means of link failures and
additions. When a link fails, it can be assumed that a node is no longer in the
neighborhood of its previous neighbor. The addition of a new link is viewed as a
movement of a node wherein, a node reappears in the new neighborhood.

The links are chosen at random from the set of all the existing links in the fully
connected network. Selecting any particular link is equally likely. The probability
of a link failing or recovering is also equally likely. We also have imposed an
additional condition in our simulations that a node at any given time cannot have
more than x neighbors. Here, x indicates the degree of the node. This condition
is imposed in order to make sure that all the links pertaining to one node alone
will not be active. This helps in simulating the mobility more closely. This, of
course, is only an approximation of the more gradual topology changes that would
be experienced in a real mobile network.

The average number of messages and the average message length for each of
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Figure 9: Los-Nettos

these algorithms are obtained by varying the interarrival time between two events
(Figures 9{11). An event can be either a link failure or a link recovery. For the
purpose of event generation, we consider a fully connected topology and start o�
with a given initial topology. Since any random link can fail or recover at any
time, our model simulates mobility closely.

The above results indicate that the routing algorithm of WRP outperforms
all other algorithms which we have simulated, namely, DBF, DUAL and ILS.
We were not able to simulate ILS for the ARPANET topology due to limited
resources. The statistics about the average number of messages and the average
message length have been collected for all the above mentioned topologies for all
the four algorithms by varying the interarrival time between events (failures and
recoveries).

In all cases, the average number of messages for DBF and DUAL are more
than that of WRP. This is because, DBF su�ers from counting-to-in�nity problem
and DUAL uses an interneighbor coordination mechanism to achieve loop-freedom
and this synchronization mechanism spans the entire diameter of the network. ILS
sends maximum number of messages since the complete topology information has
to be exchanged between neighbors every time the topology changes.

The average length of each message is the highest in DUAL as compared to all
other algorithms. The average message length in case of ILS is almost constant
since it always sends the complete topology information. Even though we do not
have simulation results for ILS in case of ARPANET topology, we can extrapolate
the results from the other two network topologies and can expect similar behavior
for ARPANET topology also.
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Figure 10: Nsfnet
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Figure 11: ARPANET

6 { Conclusion

A new routing protocol, WRP, for a wireless network has been presented. This
protocol is based on a path-�nding algorithm which substantially reduces the
number of cases in which routing loops can occur. A mechanism has been proposed
for the reliable exchange of update messages as part of WRP. The basic algorithm
used in WRP has been proved to be correct and WRP's complexity has been
analyzed. The performance of the routing algorithm in WRP has been compared
with that of an ideal topology broadcast algorithm (ILS), DUAL and DBF for
highly dynamic environment through simulations. The simulation results show
that WRP provides about 50% improvement in the convergence time as compared
to DUAL. The results indicate that WRP is an excellent alternative for routing
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in wireless networks.
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